Epreuve Mathématique

NB. : Dans cette épreuve, on demande d'indiquer, pour chaque question, la bonne réponse parmi celles qui sont proposées.

Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Partie I

On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = x \cos(x) - \sin(x)$$

On note (\mathcal{C}) la courbe représentative de f dans un repère orthonormé $(0, \vec{i}, \vec{j})$.

Question 1) On peut restreindre l'étude de la fonction f sur

- A) \mathbb{R}^+
- B) $[0,2\pi]$
- C) $[0, \pi]$
- D) $[-\pi, \pi]$

Question 2) La courbe (\mathcal{C}) est symétrique par rapport à

- A) la droite $(0, \vec{i})$
- B) la droite $(0, \vec{i})$
- C) l'origine O
- D) la droite d'équation y = x

Question 3) La fonction f est dérivable sur \mathbb{R} et on a

- A) $f'(x) = x \cos(x)$
- B) $f'(x) = \sin(x) \cos(x)$
- C) $f'(x) = -x \sin(x)$
- D) $f'(x) = -x \sin(x) \cos(x)$

Question 4) La fonction f a des optimums locaux en

- A) $x = (2k+1)\frac{\pi}{2}$, où k est un entier relatif
- B) $x = \frac{\pi}{4} + k\pi$, où k est un entier relatif
- C) $x = k\pi$, où k est un entier relatif
- D) $x = (2k + 1)\pi$, où k est un entier relatif

Question 5) Les points de (C) dont l'ordonnée est un maximum local de f sont situés

- A) sur la droite d'équation y = -x + 1
- B) sur la droite d'équation y = x
- C) sur la droite d'équation y = -x
- D) sur la droite d'équation y = x + 1

On note I_n l'intervalle $[n\pi; (n+1)\pi[$ pour $n \in \mathbb{N}$.

Question 6) La fonction f est strictement croissante sur I_n si

- A) n est pair
- B) *n* est impair
- C) $\exists k \in \mathbb{N}, n = 4k + 1$
- D) $\exists k \in \mathbb{N}, n = 4k + 3$

Question 7) Dans I_n l'équation f(x) = 0

- A) n'admet aucune solution
- B) admet une et une seule solution
- C) admet deux solutions
- D) admet une infinité de solutions

Soit $x_n \in I_n$ une solution de f(x) = 0.

Question 8) On a

- A) $\forall n \in \mathbb{N}, x_n < (2n+1)^{\frac{\pi}{2}}$
- B) $\forall n \in \mathbb{N}, x_n > (2n+1)\frac{\pi}{2}$
- C) $\forall n \in \mathbb{N}, x_n = (2n+1)\frac{\pi}{2}$
- D) $\forall n \in \mathbb{N}, x_n = n \frac{\pi}{2}$

Question 9) On a

- A) $\forall n \in \mathbb{N}, x_n = \arctan(x_n)$
- B) $\forall n \in \mathbb{N}, x_n = n\pi$
- C) $\forall n \in \mathbb{N}, x_n = (2n+1)\frac{\pi}{2} + \arctan(x_n)$
- D) $\forall n \in \mathbb{N}, x_n = n\pi + \arctan(x_n)$

Question 10) Quand $n \to +\infty$, la suite de terme général x_n est équivalente à

- A) $(2n + 1)\pi$
- B) $2n\pi$
- C) $(2n+1)\frac{\pi}{2}$
- D) $\frac{\pi}{2}$

Partie II

Soit E un \mathbb{R} -espace vectoriel muni d'une base $\mathcal{B} = (e_1, e_2, e_3)$.

On considère les applications linéaires f et g de E dans E. Leurs matrices représentatives dans cette base $\mathcal B$ sont respectivement

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \text{ et } J = \begin{pmatrix} 0 & 1/2 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1/2 & 0 \end{pmatrix}$$

Soit
$$b = \begin{pmatrix} 3 \\ -5 \\ 5 \end{pmatrix} \epsilon E$$
.

Question 11) Le déterminant de A est

- A) 4
- B) 2
- C) 0
- D) -1

Question 12) La famille $\mathcal{B}_1 = (f(e_1), f(e_2), f(e_3))$

- A) est liée
- B) forme une base de E
- C) engendre un sous-espace vectoriel de dimension 1
- D) engendre un sous-espace vectoriel de dimension 2

Question 13) Le système AX = b

- A) n'a pas de solution
- B) admet une solution unique
- C) a pour ensemble de solutions un sousespace vectoriel de dimension 1
- D) a pour ensemble de solutions un sousespace vectoriel de dimension 2

Question 14) Le système AX = b est équivalent à

- A) $X = JX + \frac{1}{2}b$
- B) X = IX
- C) X = JX + b
- D) AX = JX

Question 15) Les valeurs propres de J sont

- A) $\frac{\sqrt{2}}{2}$ et $-\frac{\sqrt{2}}{2}$
- B) 0 et $\frac{\sqrt{2}}{2}$
- C) $0, \frac{\sqrt{2}}{2}$ et $-\frac{\sqrt{2}}{2}$
- D) $0 \text{ et } \frac{\sqrt{2}}{2}$

Question 16) On désigne par *I* la matrice identité de dimension 3. On a la relation

- A) A = I + I
- B) A = I I
- C) A = 2I + 2J
- D) A = 2I 2I

Question 17) Si λ est une valeur propre de J, on a alors

- A) $\lambda + 1$ est une valeur propre de A
- B) $\lambda 1$ est une valeur propre de A
- C) $2 + 2\lambda$ est une valeur propre de A
- D) $2 2\lambda$ est une valeur propre de A

Question 18) Si u est un vecteur propre de J, alors

- A) $u + e_1$ est un vecteur propre de A
- B) $u e_1$ est un vecteur propre de A
- C) u est un vecteur propre de A
- D) $u + 2e_1$ est un vecteur propre de A

On considère les matrices suivantes :

$$P = \frac{1}{2} \begin{pmatrix} \sqrt{2} & 1 & 1\\ 0 & \sqrt{2} & -\sqrt{2} \\ -\sqrt{2} & 1 & 1 \end{pmatrix} \text{ et } D = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0\\ 0 & \sqrt{2} & 0\\ 0 & 0 & -\sqrt{2} \end{pmatrix}$$

Question 19) On a les relations suivantes

- A) J = PDP et A = PDP
- B) $J = PDP^{-1}$ et $A = PDP^{-1}$
- C) $J = PD^{t}P$ et $A = P(2I 2D)^{t}P$ et $^{t}P = P^{-1}$
- D) $I = PD^{t}P$ et $A = PD^{t}P$ et $P^{t}P$ et $P^{t}P$

Soit Q une (ou la) solution du système AX = b. On définit $(X_n)_{n \in \mathbb{N}}$ la suite de vecteurs de E par :

$$\begin{cases} X_0 = \begin{pmatrix} 3 \\ -5 \end{pmatrix} \\ \forall n \in \mathbb{N}, X_{n+1} = JX_n + \frac{1}{2}b \end{cases}$$

On définit la suite $(Y_n)_{n\in\mathbb{N}}$ par $\forall n\in\mathbb{N}, Y_n=X_n-Q$

Question 20) La suite $(Y_n)_{n \in \mathbb{N}}$ vérifie

- A) $\forall n \in \mathbb{N}, Y_{n+1} = JY_n + \frac{1}{2}b$
- B) $\forall n \in \mathbb{N}, Y_{n+1} = JY_n + \overline{b}$
- C) $\forall n \in \mathbb{N}, Y_{n+1} = JY_n$
- D) $\forall n \in \mathbb{N}, Y_{n+1} = JY_n b$

Question 21) La suite $(Y_n)_{n \in \mathbb{N}}$ vérifie

- A) $\forall n \in \mathbb{N}, Y_n = P D^n {}^t P Y_0 + \frac{1}{2} b$
- B) $\forall n \in \mathbb{N}, Y_n = P D^n {}^t P Y_0 + b$
- C) $\forall n \in \mathbb{N}, Y_n = P D^n {}^t P Y_0$
- D) $\forall n \in \mathbb{N}, Y_n = P D^{n-t} P Y_0 b$

Question 22) La suite $(\|Y_n\|)_{n\in\mathbb{N}}$, où $\|u\|$ désigne la norme euclidienne de u,

- A) est divergente
- B) converge vers $\sqrt{2}$
- C) converge vers $\frac{\sqrt{2}}{2}$
- D) converge vers 0

Question 23) La suite $(X_n)_{n \in \mathbb{N}}$

- A) n'est pas convergente
- B) converge vers $\begin{pmatrix} 3 \\ -5 \\ 5 \end{pmatrix}$
- C) converge vers $\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$
- D) converge vers $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

Partie II

On considère l'équation différentielle suivante, qu'on note (E)

$$u''(r) + \frac{2}{r}u'(r) + \omega^2 u(r) = 0$$

Soit v la fonction définie par $v(r) = r \cdot u(r)$

Question 24) La fonction v vérifie

A)
$$v''(r) + v(r) = 0$$

B)
$$v''(r) - v(r) = 0$$

C)
$$v''(r) + \omega^2 v(r) = 0$$

D)
$$v''(r) - \omega^2 v(r) = 0$$

Question 25) La solution générale de l'équation vérifiée par v s'écrit

A)
$$v(r) = \cos(\omega r + \phi)$$
 où $\phi \in [0, 2\pi]$

B)
$$v(r) = \cos(\omega r) + \sin(\omega r)$$

C)
$$v(r) = \sin(\omega r + \phi)$$
 où $\phi \in [0, 2\pi]$

D)
$$v(r) = A\cos(\omega r) + B\sin(\omega r)$$
 où $(A, B) \in \mathbb{R}^2$

Question 26) Si $r \neq 0$, alors la solution générale de (E) s'écrit

A)
$$u(r) = \frac{\cos(\omega r + \phi)}{r}$$
 où $\phi \in [0, 2\pi]$

B)
$$u(r) = \frac{\cos(\omega r) + \sin(\omega r)}{2\pi}$$

C)
$$u(r) = \frac{\sin(\omega r + \phi)}{r}$$
 où $\phi \in [0, 2\pi]$

Print

A)
$$u(r) = \frac{\cos(\omega r + \phi)}{r}$$
 où $\phi \in [0, 2\pi]$

B) $u(r) = \frac{\cos(\omega r) + \sin(\omega r)}{r}$

C) $u(r) = \frac{\sin(\omega r + \phi)}{r}$ où $\phi \in [0, 2\pi]$

D) $u(r) = A \frac{\cos(\omega r)}{r} + B \frac{\sin(\omega r)}{r}$ où $(A, B) \in \mathbb{R}^2$

T) Les solutions par pulles de (B)

Question 27) Les solutions non nulles de (E), prolongeables par continuité en r = 0, sont :

A)
$$u(r) = \frac{\cos(\omega r)}{2}$$

A)
$$u(r) = \frac{\cos(\omega r)}{r}$$

B) $u(r) = \frac{\cos(\omega r) + \sin(\omega r)}{r}$

C)
$$u(r) = A \frac{\cos(\omega r)}{r}$$
, où $A \in \mathbb{R}$
D) $u(r) = B \frac{\sin(\omega r)}{r}$, où $B \in \mathbb{R}$

D)
$$u(r) = B \frac{\sin(\omega r)}{r}$$
, où $B \in \mathbb{R}$

Question 28) On conserve pour la suite la solution obtenue à la question 27). On impose la condition initiale u'(1) = 0. On a alors la relation suivante, qu'on notera par la suite (Ω) ,

A)
$$\omega = \sin(\omega)$$

B)
$$\omega = \cos(\omega)$$

C)
$$\omega = \tan(\omega)$$

D)
$$\omega = \cot(\omega)$$

Question 29) L'équation (Ω) , vérifiée par ω , de la question précédente,

- A) n'admet pas de solution dans \mathbb{R}
- B) a une seule solution dans \mathbb{R}
- C) a une et une seule solution dans chaque intervalle $[n\pi; (n+1)\pi[$, où $n \in \mathbb{N}$
- D) a plusieurs solutions dans chaque intervalle $[n\pi; (n+1)\pi[$, où $n \in \mathbb{N}$

Question 30) Si ω_1 et ω_2 sont deux solutions distinctes de (Ω) , on note u_1 et u_2 les deux solutions de (E) associées, respectivement à ω_1 et ω_2 . On pose $I = \int_0^1 u_1(r) \ u_2(r) \ r^2 dr$. On a alors

A)
$$I = \pi$$

B)
$$I = \frac{\pi}{2}$$

C)
$$I = 1$$

D)
$$I = 0$$

Feuille de réponses

Epreuve Mathématique

Nom et Prénom

Les réponses aux questions sont à donner exclusivement sur cette feuille : les réponses données sur les feuilles précédentes ne seront pas prises en compte.

Question 16 : A \square B \square C \square D \square
Question 17 : A \square B \square C \square D \square
Question 18 : A \square B \square C \square D \square
Question 19 : A \square B \square C \square D \square
Question 20 : A \square B \square C \square D \square
Question 21 : A \square B \square C \square D \square
Question 22 : A \square B \square C \square D \square
Question 23 : A \square B \square C \square D \square
Question 24 : A \square B \square C \square D \square
Question 25 : A \square B \square C \square D \square
Question 26 : A \square B \square C \square D \square
Question 27 : A \square B \square C \square D \square
Question 28 : $A \square B \square C \square D \square$
Question 29 : A \square B \square C \square D \square
Question 30 : A \square B \square C \square D \square

Correction Mathématiques

- **Question 2:** A \square B \square C \blacksquare D \square
- Question 3: $A \square B \square C \blacksquare D \square$
- Question 4: $A \square B \square C \blacksquare D \square$
- Question 5: $A \square B \blacksquare C \square D \square$
- Question 6: $A \square B \blacksquare C \square D \square$
- Question 7: $A \square B \blacksquare C \square D \square$
- Question 8: $A \blacksquare B \square C \square D \square$
- Question 9: $A \square B \square C \square D \blacksquare$
- **Question 10:** $A \square B \square C \blacksquare D \square$
- Question 11: $A \blacksquare B \square C \square D \square$
- **Question 12:** $A \square B \blacksquare C \square D \square$
- Question 13: $A \square B \blacksquare C \square D \square$
- Question 14: $A \blacksquare B \square C \square D \square$
- Question 15: $A \square B \square C \blacksquare D \square$
- Question 16: $A \square B \square C \square D \blacksquare$
- Question 17: A □ B □ C □ D ■
- Question 18: $A \square B \square C \blacksquare D \square$
- Question 19: $A \square B \square C \blacksquare D \square$
- **Question 20:** $A \square B \square C \blacksquare D \square$
- **Question 21:** A \square B \square C \blacksquare D \square
- **Question 22:** A \square B \square C \square D
- **Question 23:** $A \square B \square C \blacksquare D \square$
- **Question 24:** $A \square B \square C \blacksquare D \square$
- **Question 25:** $A \square B \square C \square D \blacksquare$
- **Question 26:** $A \square B \square C \square D \blacksquare$
- Question 27: $A \square B \square C \square D \blacksquare$
- Question 28: $A \square B \square C \blacksquare D \square$
- Question 29: $A \square B \square C \blacksquare D \square$
- **Question 30:** $A \square B \square C \square D \blacksquare$